当前位置:首页 > 分享 > 正文内容

想学好数学的同学转( 知识点4)

访客3年前 (2022-09-09)分享713

必修五和选修2-1的知识点

操作方法

  • 01

    1. 常用逻辑用语(约8课时)(1)命题及其关系①了解命题的逆命题、否命题与逆否命题。②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。(2)简单的逻辑联结词了解逻辑联结词“或”“且”“非”的含义。(3)全称量词与存在量词①理解全称量词与存在量词的意义。②能正确地对含有一个量词的命题进行否定。

  • 02

    2. 圆锥曲线与方程(约16课时)(1)圆锥曲线①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。⑤通过圆锥曲线的学习,进一步体会数形结合的思想。(2)曲线与方程了解曲线与方程的对应关系,进一步感受数形结合的基本思想。(3)椭圆、双曲线与抛物线椭圆标准方程x^2/a^2+y^2/b^2=1(a>b>0,c^2=a^2-b^2)(焦点在x轴上)焦点F1(-c,0),F2(c,0)离心率e=c/a双曲线标准方程x^2/a^2-y^2/b^2=1(a>0,b>0,c^2=a^2+b^2)(焦点在x轴上)焦点F1(-c,0),F2(c,0)离心率e=c/a抛物线标准方程 y^2=2px(p>0)(焦点在x轴正半轴上)焦点F(p/2,0)

  • 03

    3. 空间向量与立体几何(约12课时)(1)空间向量及其运算①经历向量及其运算由平面向空间推广的过程。②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。③掌握空间向量的线性运算及其坐标表示。④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。(2)空间向量的应用①理解直线的方向向量与平面的法向量。②能用向量语言表述线线、线面、面面的垂直、平行关系。③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理)(参见例1、例2、例3)。④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。参考案例例1. 已知直三棱柱 中,∠ACB=90°,∠BAC=30°, ,M是棱 的中点。 证明: 。例2. 已知矩形ABCD和矩形ADEF垂直,以AD为公共边,但它们不在同一平面上。点M,N分别在对角线BD,AE上,且 。证明:MN∥平面CDE。例3. 已知单位正方体 ,E、F分别是棱 和 的中点。试求:(1) 与EF所成的角;(2)AF与平面 所成的角;(3)二面角 的大小。

  • 04

    选修2-21. 导数及其应用(约24课时)(1)导数概念及其几何意义①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。②通过函数图象直观地理解导数的几何意义。(2)导数的运算①能根据导数定义求函数 的导数。②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如 )的导数。③会使用导数公式表。(3)导数在研究函数中的应用①借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。(4)生活中的优化问题举例。例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用(参见选修1-1案例中的例5)。(5)定积分与微积分基本定理①通过求曲边梯形的面积、变力做功等,从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。②通过变速运动物体在某段时间内的速度与路程的关系,直观了解微积分基本定理的含义(参见例1)。

  • 05

    2. 推理与证明(约8课时)(1)合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修1-2案例中的例2、例3)。②体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。③通过具体实例,了解合情推理和演绎推理之间的联系和差异。(2)直接证明与间接证明①了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。②了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。(3)数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。(4)数学文化①通过对实例的介绍(如欧几里得《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。②介绍计算机在自动推理领域和数学证明中的作用。

  • 06

    3. 数系的扩充与复数的引入(约4课时)(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。(2)理解复数的基本概念以及复数相等的充要条件。(3)了解复数的代数表示法及其几何意义。(4)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。。参考案例例1.一个物体依照 规律在直线上运动,我们已经知道,其在某一时刻 的运动速度 (即瞬时速度或瞬时变化率)为 在 时刻的导数,即 。今考虑 在到之间位置的总变化。我们把区间 分割成n个小区间,不妨假设小区间的长度相等,其长度为。对每一个小区间,我们假设的变化率近似为某一常量,于是我们可以说的变化率×时间。在第一个小区间内,即从 到 ,假设 的变化率近似地为 ,于是有同样,对第二个小区间,即从 到 ,假设 的变化率近似地为 ,因此有等等。把在所有小区间上得到的位置变化近似值全部加在一起,得到s的总变化我们可以把 在 到 之间位置的总变化写成 。另一方面,当分割无限加细、n趋于无穷时,和式的极限就是定积分 或 ,也就是 在 到 之间位置的总变化。于是,我们可得到以下结论:也就是说,变化率的定积分给出了总的变化。特别地,当物体作匀速运动时,即 时,当物体作匀加速运动时,即 (其中 是常数)时,一般地,如果 是连续函数,并且 ,那么这就是微积分基本定理。这里给出的并不是非常严格的证明,但是,它反映了微积分基本定理的基本思想,反映了微分(导数)与积分的联系。

扫描二维码推送至手机访问。

版权声明:本文由冒牌码农发布,如需转载请注明出处。

本文链接:http://js.xxbyc.cn/post/274.html

分享给朋友:

“想学好数学的同学转( 知识点4)” 的相关文章

海参怎么吃才是最有营养

海参怎么吃才是最有营养

海参在食用方法上,可谓是五花八门。不过,海参最重要的是吃出它的营养来,也可以根据自身体质选择不同吃法。海参的吃法:01煮着吃:把水发过的海参放入开水煮,煮开了以后盛入盘中,加入加入盐、糖、醋、味精拌匀即可食用。这种方法可以很大限度保留其营养...

麻辣小龙虾的做法

麻辣小龙虾的做法

虾是一种蛋白质非常丰富、营养价值很高的食物,其中维生素A、胡萝卜素和无机盐含量比较高,而脂肪含量不但低,且多为不饱和脂肪酸,具有防治动脉粥样硬化和冠心病的作用。另外,虾的肌纤维比较细,组织蛋白质的结构松软,水分含量较多,所以肉质细嫩,容易消...

如何挑选贵宾犬

如何挑选贵宾犬

准备想养狗吗?想养一只贵宾犬?编辑给大家的建议是购买时选择家养,并且看到狗妈妈。一是安全又保障,二是可以预见宝宝以后的体型。另外还有本文以下总结的七个看点,让你轻松挑选健康贵宾犬。操作方法011.看鼻子:健康的应该是凉凉湿湿,但刚刚醒的时候...

CPRIME如何测试效果呢?

CPRIME如何测试效果呢?

原理说明:我们人体的日常运行会形成一道环绕全身的电磁场,称之为EMFs,这是维持人体生命和健康所必须的系统之一。不过在生活中很多因素都会破坏这个地磁场的平衡,从而影响健康及身体的性能与自愈能力。而其内置的美国专利芯片,有助接收并重新传送环绕...

脱发怎么治疗

脱发怎么治疗

现在每年脱发人数都在上升,70%以上是遗传导致的,还有就是跟生活有关系,例如:压力、熬夜、心情、饮食、空气、劣质洗剂等等都会出现脱发。我要做的就是调整良好生活习惯,选对正确治疗脱发的方法。操作方法01生活调理:首先需要我们有一个良好的生活习...

金针菇培根卷怎么做

金针菇培根卷怎么做

金针菇和培根在生活中都是特别受人喜爱的食物。金针菇口感爽脆,培根口感比较软,两者结合起来吃会别有一番风味。下面我来教大家一种金针菇培根卷的做法。操作方法01首先咱们先把金针菇的底部用刀切掉。然后用手把它撕开,撕均匀。然后用水洗干净放在盆里备...